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Introducing a finite correlation P0 between any two learned patterns (others 
remaining uncorrelated), we observe in a numerical simulation that the Hopfield 
model stores these two patterns with correlation pf such that &>~Po for any 
loading capacity c~. The patterns are memorized perfectly (with pf = P0) up to 

-0.05 for finite correlations P0 not exceeding a value pc(c0, where pc(e) 
decreases continuously to zero at ~ --- 0.05. 
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In the Hopfield model  of a neural network,  (1~ each neuron is represented 
by two-state (active/passive) Ising spins Si--  +1 and the synaptic connec- 
tions are represented by spin-spin interactions J~ constructed following the 
Hebb rule: Jij = ~ P  ~iu~j"/N. Here, ~fl represent the patterns (configura- , u = l  

tions) to be learnt or  memorized (p is the number  of  patterns and N is the 
total number  of neurons).  Each ~fl is taken to be an independent r andom 
quenched variable in the Hopfield model. 

The Hopfield model  is a solvable one in the thermodynamic  limit.  In 
the exact solution of this model,  (2) it is necessary to assume that  the 
learned patterns are all completely r andom and uncorrelated. Models with 
correlated patterns have been studied (both numerically and analytically), 
where the average correlat ion between all the patterns has been kept 
finite (3) (i.e., each pat tern has a nonzero  overlap with all other patterns on 
average). Models with hierarchically correlated patterns have also been 
studied, ca) We consider a different problem in which only two of  the 
patterns are correlated (have finite overlap) so that  the average correlat ion 
is still irrelevant. Such finite correlations between a specific number  of  pat- 
terns have also been considered. (s 9) In  particular, Derr ida  et at. (s) solved 
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this problem for the randomly diluted asymmetric version (where only two 
patterns are correlated) and found three phases: in one the patterns could 
be clearly distinguished, in the second, they are memorized with the same 
final overlap and could not be distinguished. In the third, none of them 
could be recalled. Similar phases where obtained for the Hopfield model (6) 
and also for other learning rulesJ 7) Fontanari and Koberle (6) assumed the 
solution of Amit et al. ~2) to be valid even with this finite correlation (a 
numerical study with rather small system size was also done). The restric- 
tion of the correlation between two patterns only ensures that the critical 
memory-loading capacity remains unaffected at about 14%, i.e., ac ~ 0.14, 
where e = piN. Here, we are interested in investigating, in the context of 
the Hopfield model, the variation of the final correlation p/between the 
corresponding learned patterns, with the initial correlation P0 between a 
randomly chosen pair of patterns to be learned. In the earlier studies, ~5 7) 
the dynamics of a single configuration having finite overlap with this pair 
was studied. We study the evolution of two configurations, corresponding 
to the two correlated patterns, and measure their overlap after they reach 
their respective fixed points. In comparison to the earlier results, (5'6~ one 
expects a region in the e Po space where the ratio Pf/Po = 1 and another 
with Pf/Po r 1. (We restrict ourselves to c~ < ~c, so that the patterns are 
always recalled.) In short, we try to understand the ability of the Hopfield 
model to store the correlation between two patterns. 

We introduce a correlation Po between two patterns (denoted by 1 
and 2) selected randomly. All other pairs of patterns are completely 
uncorrelated. Then the initial correlation between the patterns are given by 

p~V = ~ ~ i~ /N  
i 

where 
p.V = Po for # = 1 and v = 2 

= 0 for other #, v values 

The system is then allowed to evolve from both the initial states 
Si(1)(0) = ~1 and S~(2)(0) = ~2. The dynamics followed is the usual Hopfield 
dynamics 

Si(t + l )=sgn(~  J~jSj(t)) 

The correlation PF between the states S (1) and S ~2) after reaching their 
respective fixed points (denoted by t*) is measured by 

py = ~ Si~l)(t *) Si~2)(t*)/N 
i 
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The internal field h i for the ith neuron in the state Si = ~ when ]~ ~ 1 
or 2 is given by 

h i = ~ ,  ~ 1 +  ~ ~ j ~ i ~ j / N  (1) 
i r  
# ~Sv 

The noise factor 

i c j  
g ~ v  

is a random variable with variance 6 = ( p - 1 ) / N .  For  # =  1 or 2, the 
weight factor for ~i" becomes 1 _+ P0 (according to whether ~i1= _+~i 2) and 
the noise term is a sum over p - 2  patterns in the expression of h. For  
example, for Po = 1, there is effectively a single pattern learned twice. The 
noise factor is a random variable with variance 6 ~ - ( p - 2 ) / N  for two 
correlated patterns. Hence the value of the critical loading capacity is 
unchanged for large p and N. 

Special attention is given to the limit Po--*0 to see whether the 
Hopfield model generates any correlation in this limit. 

In our simulation, we have taken N =  500 for measuring Pf/Po. The 
patterns between which correlation is introduced are selected randomly 
and averaging is done over 25 configurations for each value of Po and ~. 
For  different values of ~, the ratio Pf/Po is calculated. For Po = 1, this ratio 
is trivially unity. 

The ratio Pf/Po is seen (see Fig. 1) to be greater than or equal to 1 for 
all values of ~ and Po, implying that the Hopfield model can retain correla- 
tion between a particular pair of patterns either retaining its exact value or 
by enhancing it. For  small values of ~, Pf/Po = 1 when the initial correlation 
P0 is also small. It then increases from 1, reaches a maximum value, and 
again decreases to 1. For  higher values of e, the same behavior is observed: 
the value of Pf/Po is always greater than one, however small is P0. The 
value of Po at which the ratio reaches the maximum is also seen to shift 
toward P0 = 0.5 from higher values as c~ increases. 

For  studying the behavior of this system when Po ~ 0, we consider a 
larger system with N =  1000. The critical value of po=pc below which 
Pf/Po = 1 and above which it starts deviating from 1 is located for each c~ 
(with averaging over about  50 configurations for each ~). As e is increased, 
Pc decreases continuously and reaches a value ~<0.07 beyond e-~0.055. It 
maybe recalled that in the Hopfield model, the retrieval states become 
absolute minima of the free energy function up to e = 0.05 for completely 
random patterns. Our results indicate that this feature is probably retained 
even when two patterns are correlated up to a maximum correlation p,.(~), 
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Fig. 1. The variation with a of the ratio P/Po of the final and initial correlations between 
any two patterns in the Hopfield model (simulation data for N =  500). The dashed lines are 
guides to the eye. 

where pc(e) is found to assume nonzero values for 0 ~ a  ~<0.055. [-That 
pc(a) does not really go to zero may be due to the finite system size: e.g., 
Pc is about 0.15 for e = 0 . 0 7  for 500 neurons (Fig. 1) and this value is 
definitely greater than that for 1000 neurons.] One can guess that Pc goes 
to zero beyond c~--0.05 in the thermodynamic limit from the behavior of 
pc(co) in Fig. 2. 

Hence, the Hopfield model generates some correlations, however 
small, for completely uncorrelated patterns above a certain co. This is also 
indicated in Fig. 1, in which the extrapolated value P/Po does not go to 1 
for P0 --* 0 for higher values of co. It may be mentioned in this context that 
in the layered feedforward neural network model, the value of correlation 
between the learned patterns abruptly jumps to unity from a negligible 
value at a critical e ~ 0 . 1 8  (1~ (this correlation grows continuously from 
zero in the diluted model(m; however, the correlation in this model is built 
up during the learning process). Obviously, no such behavior is expected 
in the Hopfield model for Po--*0, as patterns are memorized with a 
maximum error of 3% for cc<0.14. The correlations generated by the 
Hopfield model in this limit, therefore, are much lesser than unity. 

In conclusion, we have observed that the Hopfield model indeed has 
the property of recognizing and enhancing the correlation between two 
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Fig. 2. 
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The variation of the critical value of initial correlation Pc (up to which &/Po = 1) 
versus c~ (simulation data for N=  1000). 

in i t ia l ly  cor re la ted  pa t te rns .  W i t h  inc reas ing  e a n d  Po, it genera tes  m o r e  

a n d  m o r e  cor re la t ion ,  while  the  ra t io  of the  f inal  co r re l a t ion  to the in i t ia l  

co r r e l a t i on  reaches a m a x i m u m  at  Po ~ 0.5 for large va lues  of e. W h e n  the 
pa t t e rns  are  h ighly  corre la ted ,  this  ra t io  becomes  i n d e p e n d e n t  of  ~. 
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